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It was suggested by Proudman (1970) that many of the phenomena of turbulence 
a t  high Reynolds number could be modelled by a suitably chosen member of a class 
of non-Newtonian fluids, v-fluids, all of whose properties depend only on a single 
dimensional constant with the dimensions of viscosity. This paper investigates 
the relaxation of homogeneous stress in a doubly degenerate third-order v-fluid 
(which is the simplest member of the class that can possibly be used to model 
turbulence) in the limit v + 0. 

The equation which governs the stress tensor S is of the form 

ASfl +Bg2 = 0,  

where A and B are isotropic tensor constants of the fluid; its differential structure 
can be of four distinct types. A list of properties required of the solutions of the 
equation is set out, and it is shown that only one of the four types has all the 
properties demanded of it. The behaviour of solutions of this equation is found 
to  be consistent with the theoretical and experimental results on the decay of 
homogeneous turbulence. 

1. Introduction 
I n  his paper on the motion of v-fluids, Proudman (1970) shows that some 

properties of turbulence can be described by a third-order v-fluid if an appro- 
priate choice is made for the constants which appear in the governing equation 
for the stress tensor S. At present, little is known about the behaviour of solutions 
of equations of this type, but a description of turbulent phenomena by relatively 
simple equations such as these is clearly of such great potential value that it 
is worth investigating them further. The result of such an investigation will 
either be a demonstration that some important known properties of turbulence 
cannot be described in this way, or else it will show that some relation or set 
of relations must be satisfied by the constants in the equation for the stress if 
these properties are to be described adequately. 

In view of the large number of constants in the governing equation of a v-fluid 
it is preferable to consider some special phenomena which allow an investigation 
of their dependence on a smaller group of constants. Thus the phenomenon 
investigated here is that of relaxation of homogeneous stress in a stationary 
third-order v-fluid, and the conditions under which it can be used to model the 
decay of homogeneous turbulence at infinite Reynolds number. 
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The properties of homogeneous turbulence which must be shared by S if - s 
is to describe the Reynolds stress tensor (-uiai> for this problem, where U’ is 
the turbulent velocity fluctuation, and which will be required of solutions of any 
equation for S studied in this paper as a model for turbulence, are as follows. 

(i) S must be real and positive semi-definite for all values of the time t at and 
after the initial instant. This condition is an immediate consequence of the 
definition of the Reynolds stress tensor. 

(ii) S must satisfy the thermodynamic condition 5 < 0, where r = tr  (8). 
(iii) The experimental result that the energy, and hence (T, decays to zero 

a long time after the relaxation started. The form of the decay can be approxi- 
mated well by a power law for isotropic and slightly anisotropic homogeneous 
turbulence and, in experiments in wind tunnels, is independent of a Reynolds 
number based on grid spacing and mean velocity when this number is very large. 

(iv) The experimental result that, if the stress tensor in homogeneous turbulence 
is initially anisotropic and has a high Reynolds number, then it has a tendency 
towards isotropy. 

Proudman defines an nth-order v-fluid as one in which S ,  at a point where the 
velocity is u, is governed by an equation of the form 

- 

Dt Dtn 7 s 7 ~ > ” ’ l  

DnS Du Dnu DS 
=+,-,... ,- 

where f is a function which is regular at  the origin of the multi-dimensional space 
of all the arguments shown and all the space derivatives of any order. He con- 
cludes that the principle of linear material indifference must apply to the fluid 
if it is to model turbulence and hence that 

Du Dnu u , - ,  ...,- 
Dt Dt” 

must not occur explicitly in the function, although their space derivatives may. 
Further, he requires S = 0 to be a possible solution of the equation. 

These conditions lead him to a family of fluids of different orders; the equations 
which govern first-, second- and third-order fluids, respectively, reduce to the 
forms 1 

&’ = - ~ : s ~ + o ( v o )  (n = 11, 

B = - # S ~ + - ~ ~ S & ’ + O ( Y O )  

V 

1 1 
(n = 2), 

V 

... 1 1 1 s = -  v2p?S4 + 3 p z S 2 Q  + ; (p;SS +pi@) + O(v0) (n = 3) 

for the relaxation of homogeneous stress in the absence of a velocity field u;  
the quantities p;  are non-dimensional isotropic tensor constants of the fluid. 
If the fluid is to model the decay of homogeneous turbulence at  high Reynolds 
number, the equation must possess a non-trivial solution in the limit as v + 0. 
Thus for a first-order fluid the only possible form of equation for S in the limit is 

p:s2 = 0. 
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Since the equations are universal, this can only be a condition of isotropy and 
so, at  large Reynolds number, a first-order v-fluid must have an approximately 
isotropic stress system; departures from this must decay through transients of 
very short duration. This behaviour is quite unacceptable in a model which 
attempts to describe the general behaviour of homogeneous but not necessarily 
isotropic turbulence, and so a fist-order fluid must be rejected. For the same 
reason a second-order fluid in which pi  is non-zero must be rejected. However, 
if p: = 0, the limit becomes pis8 = 0; 

it is clear that this equation cannot adequately describe the decay of turbulent 
energy and so a second-order fluid must be rejected. 

For a third-order fluid the same arguments show that the fluid must be doubly 
degenerate; so p;  = p;  = 0, 

giving a constitutive relation in the limit as v + 0 of the form 

a , ~ a . + a 2 ~ i i + a , ( S 8 + ~ S ) + a , I a ~ + u , ~ t r  (~8)+a,& 
+ a , ~ 2 + u g I ~ 2 + a g I t r ( ~ 2 )  = 0. (1.1)  

For a suitable choice of the constants a,-a,, this equation gives a power-law 
decay for isotropic stress. It is thus clear that a doubly degenerate third-order 
v-fluid is the simplest v-fluid which can possibly be used to model the phenomena 
of turbulence. The aim here is to restrict the values of these constants in such 
a way that the solutions of (1.1) agree satisfactorily with all the properties of the 
turbulent stress tensor listed above. 

In  this connexion we may note that certain relations between the constants 
lead to degeneracies in the differential structure of (1.1) over and above those 
considered by Proudman, which were essentially concerned with the limiting 
process v + 0. Thus doubly degenerate fluids may be divided into four types. 

Type I. Equation (1.1) determines all components of 8 for all but special 
values of S. 

Type 11. Equation (1.1) determines more than one linear combination of the 
components of L!? for all but special values of S ,  but does not determine them all. 

Type 111. Equation (1 .1)  determines only one linear combination of the corn- 
ponents of 8 for all but special values of #. 

Type IV. Equation (1.1) does not involve second derivatives. 
If a, = a2 = a3 = 0 or a, = a3 = a6 = 0 

the fluid is of type 111, and if 

a, = a2 = a3 = a4 = a5 = 0 

it is of type IV. All other fluids are either of type I or type 11. 
The last of these four types can be rejected at once for the same reasons that 

led to the rejection of first- and second-order v-fluids. It is possible to investigate 
the remaining three types for arbitrary initial conditions and for entirely 
arbitrary forms of the equation, but attention will be restricted to those forms 
which possess the following properties. 
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Restriction 1. The stress tensor remains positive definite if it is initially so. 
Restriction 2 .  The trace v of the stress tensor is determined by the equation and 

is monotonically decreasing whenever S is positive definite. 
Sections 2 and 3 of this paper are devoted to the study of fluids whose stress 

system is governed by (1.1) and which must have these two properties. The 
principal result of $ 2 is that the asymptotic stress in fluids of types I and I1 is 
not isotropic for arbitrary initial conditions, and the principal result of $ 3  is 
that the asymptotic stress in fluids of type I11 is always isotropic (and previously 
well-behaved) for arbitrary initial conditions provided that certain inequalities 
in the fluid constants are satisfied. These results will be obtained for the initial 
conditions appropriate to the differential type of the equation being studied, 
consistent only with the additional requirements A‘SA 3 0 for all real vectors A 
and 5 < 0 at the initial instant. 

The second of these two results implies that a fluid of type I11 is acceptable 
as a model for turbulence in the sense that, with appropriate conditions on the 
constants in the equation, all the properties of homogeneous turbulence listed 
above are satisfied. 

The first of these results, however, has the consequence that fluids of types I 
and I1 can only be accepted as models of turbulence if constraints on the initial 
conditions are imposed in addition to those required by the differential structure 
of the governing equation; thus for fluids of type I the initial conditions required 
by the differential structure of the equation are values of S and S with the given 
value of S positive definite and that of 3 negative for consistency with restrictions 
1 and 2 .  There is no evidence to suggest that there are any further restrictions 
on S or S if S is to model the decay of stress in homogeneous turbulence; con- 
sequently, a t  infinite Reynolds number, further constraints deduced from the 
equation itself (if a fluid of type I or I1 is to be accepted) seriously undermine 
Proudman’s approach, which is based heavily on universality. (The position a t  
finite Reynolds number may be different; his approach is asymptotic as v -+ 0 
and it may be necessary to restrict initial conditions to be close in some sense 
to those appropriate to v = 0.) 

In  the light of these remarks and the results of $3 2 and 3, it  follows that the 
only fluids whose stress systems are governed by (1. 1) which can serve as models 
for turbulence are those of type 111, and they are studied further in $4. It will 
be shown there that the exact solution of the equation which governs the stress is 

S0-+CroZ QaoI 
( 1 + t/t0)1+% ( 1 + t / t , ) l+T  ’ S =  + 

where So and vo are the values of S and cr a t  t = 0 and 

t o  = ( 1 + r ) f l o / l ~ o l ,  

where d-o is the initial value of 5. The numbers r and n are functions of the con- 
stants of the equation. This solution is compared with the results of experiments 
on the decay of homogeneous turbulence a t  large Reynolds numbers. 
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2. Fluids of types I and II 
The principal aim of this section is to show that X does not necessarily tend to 

the isotropic state for every possible initial condition when the fluid is of type I 
or type I1 and satisfies the two additional restrictions 1 and 2.  Since the result 
is true within the restricted class of axisymmetric forms for S, it is sufficient to 
consider only this case. It is possible to establish further constraints on the 
constants of the fluid if the two restrictions are to be satisfied for general forms 
of S, and this is done. 

A large class of fluids of both types are those in which (T is not determined 
when S is isotropic, and such fluids are not discussed here since they violate 
restriction 1. The axisymmetric relaxation of all further fluids of these two types 
may be discussed by the same methods and it is unnecessary to differentiate 
between them. 

To study axisymmetric relaxation, write 
7 
1 

Sij = Q(a-g)6ij+gh,hj, where A; = 1; 
i=l  

it follows that S is a solution of (1.1) provided that 

( &al + &a, + $a3 + a4 + *a5) crii + $( $a3 + a5)  gg 

+ (&a6++a, +a,+ &ag) 3, + +($a7 + Zag) gz = 0 (2.1) 

(2.2) 

These equations can possess solutions for which g vanishes at all times, and 
this corresponds to the decay of isotropic stress. The solution is then of the form 

and (a, + $a3) ( ~ g +  $a3gg+ (a, + +a3) gii + (a6 + 3a7) g3 + &a,g2 = 0. 

(T = R/(t - to)'+', 

where R and to are fixed by the initial conditions, but r is determined by the 
coefficient in (2.1). If the stress is to decay to zero as t tends to infinity, r must 
be greater than - 1. The coefficients of the first and third terms of the equation 
must therefore both be non-zero and in the ratio 

2 S r  1: -- 
l + r '  

with r > - 1. 

close to isotropy; the solution can then be expressed in the form 
Now suppose that the equations are solved with initial conditions very 

R/(t - to)'+"+ sR,(t) + O ( @ ) ,  

where e is small compared with R. The function R,(t) is of order I and satisfies 
the equation 

( t  - to), (a, + $a3) R, - (t  - to) ( I  + r )  (as + $a,) A, + (1 + r )  (2 + r )  (a, + 3a3) R, = 0. 

This equation has a general solution for R, of the form 

a b + 
(t- t0)l+rn (t-t,)l+"' 
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where a and b are determined by the initial conditions but m and n are given in 
terms of a,, a2, a3, a6 and a7. We may note that if the solution is to tend to isotropy 
then n and m should both be greater than r. This also gives the asymptotic 
form of decay for large values oft for those solutions which tend to isotropy. 

The information obtained so far can now be expressed in terms of m, n and r 
by means of the ratios 

2 + r  
&a, + +a2 +$a3 + a4 + $a,:$a3 + $a,:$a7 + $a9: +a6 ++a, +a, + +ao = 1 :a:& - - 

l + r  

(1 +n)  (1 + m ) .  + + 3: 8, and 
. l :y : -  

(1 + r )  ( 2 + r )  1+r  
a2 + $a3: a, + 8a3: #a3: a6 + +a7: +a7 = 

. .  
where a, P, y and 6 are parameters. 

Equations (2.1) and (2.2) can now be solved for d and Q: 

and 
(1 + n) (1 + m) (1. +n) (1 + m )  2+r*2 ( v2 + yvg - ag2 (1 + r )  (2 + r )  ] Q = g (1 + r )  (2 + r )  (pg2- iTr  ) 

+ a*g n+m+3-8ag2.  (2.4) 
l + r  

The condition that the principal stresses must be non-negative gives further 
information about y and a. Suppose that the initial conditions are such that a 
is positive and 6 is negative; then so long as 6 is not zero, g can be specified 
arbitrarily and g then need only satisfy the condition that the principal stresses 
are non-negative. In  particular, 3 can be specified so that the fluid is initially 
impelled away from isotropy; in other words, the lesser of the two principal 
stresses can be made to decrease at  an arbitrarily high rate. It is clear that such 
conditions could not be applied for physical reasons if this principal stress were 
zero, but they are otherwise acceptable and imply that a principal stress very 
small but positive would become negative after a finite time if the initial tendency 
away from isotropy were made large enough. The only conditions under which 
this would not apply are when the vanishing of either principal stress gives a 
singular point of the equation. This requires that the factor on the left-hand sides 
of (2.3) and (2.4) is (a-g) (a+2g). Consequently 

y = 1, a = 2 ( 1 + r ) ( 2 + r ) / ( l + n ) ( l + m ) .  
Now, in order to study the behaviour of a, consider initial conditions in which 
is arbitrarily small, g is non-zero and g does not take either of the possible 

extreme values - +a or a. The sign of ii is then the same as the sign of 

(as - YP) 9 -Pa. 
Since ci cannot be positive, this factor must either be identically zero or else 

must be negative for all acceptable values of g with, again, the possible exception 
of the extreme values. If this factor is identically zero then 

p = as = 0. 
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Since a #= 0, this requires 6 = 0. Otherwise, a, /3, y and 6 must satisfy the 
inequality 

with /3 > 0. 

ditions, or not, write 
g = xu, where -+ < x 6 1, 

and 6 = / 3 f ( l + n ) ( l + m ) / 2 ( 1 + r ) ( 2 + r ) ,  where /3> 0, - 1  < f <  2. 

P ( r - 2 )  < a6 < P(l+r), 

In order to investigate whether the fluid tends to isotropy for all initial con- 

Then, if 2 = 0, 
u2( 1 - x) (1 + 22) 2 = xF(x)  $2, 

where P(x )  is given in the appendix; from this it is clear that there are some fluids 
for which P(z )  can vanish for a value of z between - $ and 1. For such fluids it 
is possible to pose initial conditions for which there is a solution with a constant 
value of x. This shows that, for some fluids which satisfy all the requirements that 
have been made, there are initial conditions for which the solution does not tend 
to isotropy. For the rest of this section, therefore, we shall restrict attention to 
those fluids for which 

F(x )  < 0 for - 4  < x c 1. 

Since the form of the equations for x and u show that u is not constant near 
the singular points and that u decreases with time, x can be expressed as a func- 
tion of u by an equation of the form 

u2( 1 - x) (1 + e x )  d2z/du2 = C(x, udx/du) .  (2.6) 

The function C, which is a cubic in its second argument, unless /3 = 0, is given in 
the appendix. 

To investigate the behaviour of solutions of (2 .6 )  near x = 1, write 

x = 1-€, 7 = logu, 

and approximate (2 .6)  to the lowest order in each term: 

€ d2€/d72 = - C( 1, - d€/dT). 

Q(1,Y)  = 0 

Thispossesses solutions which vanish as 7 decreases if 

possesses any real neagative roots. Thus if the fluid is to tend to isotropy the 
equation may not have any such roots. Likewise 

q - & , Y )  = 0 

may not possess any real positive roots. Unless these conditions are satisfied, 
some solutions of the original equation will tend asymptotically to the singular 
values of x. 

When all the information gathered so far is used to express the constants 
a,+, in terms of the parameters m, n, r ,  f and /3, the equation of the v-fluid is 
found to be 

where the form of T is given in the appendix. 

a3T+4a,Itr(T) = 0, (2.7) 



648 J .  M .  Dowden 

Since the equation must give a solution for isotropic decay it follows that a5 

T = 0. ( 2 . 8 )  

cannot be chosen equal to - +a3, and so the equation is equivalent to 

The general conditions that energy should decay and that S should be positive 
definite can be investigated for (2.8) in a similar way to the special investigation 
of axisymmetric decay. Thus the zeros of the principal stresses must always be 
singular points. That this is in fact the case is most easily seen if the equation is 
regarded as an algebraic equation for the components of # in a frame of reference 
whose axes coincide instantaneously with the principal axes of X. It can then 
be shown that the system of three equations which results for sll, 8,, and #,, 
is singular whenever a principal component of S vanishes. 

In the same way energy decay can be investigated in the general case. Consider 
a set of initial conditions for which all the principal stresses are non-zero but the 
energy decay is arbitrarily small on a time scale defined in terms of tr(6':). 
Multiply (2.8) by S;l and take the trace of the equation which results. With the 
condition 8,, arbitrarily small this is approximately 

The condition that 8 < 0 requires that ii,, 6 0 and so, for all initial conditions 
with &,, arbitrarily small, the sum of the second two terms must be positive or 
zero. However, the ratio 

3 tr (fl:S;l)/tr (6';) tr (S;l) 

can then have any value in the open interval (0,2). The range of permissible 
values off is therefore given by 

- 1  < f <  1. 

It is now possible to see that for /3 + 0 these conditions, as well as being 
necessary for energy decay, are also sufficient, for suppose that, at  some later 
value oft, 8 = 0. This would have to be a maximum value of the energy because 
of the sign of ii, in contradiction to the requirement that the energy was 
previously decreasing. 

Finally, the complete set of conditions that have been found so far can be 
investigated to see if there are any solutions for m, r,  n, /3 and f. The conditions 
that must be satisfied are: 

m > r > - l ,  n > r >  -1 ,  P > O ,  I f 1  < 1;  (2.9) 
P(z)  < 0 for -4 < x < 1; (2.10) 

C(1,y) + 0 for y < 0; (2.11) 

C(-&,y) + O  for y >  0. (2.12) 

It is convenient to investigate the two cases ~3 = 0 and /3 > 0 separately. In 
order to study the problem when ,i3 + 0 introduce the new parameters 

q = 3(2+r ) /4 (m+n+3) ,  

= 2(m +n+ 3 )  ( 2  + r ) ,  (1 +r)//3( 1 -if) (1 + n), (1 +m),, 
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and, when f + - 1, 

5 = 2 ( m + n +  3) (2 + r ) 2  ( 1  +r)/,B(l +f) (1  +n)2 (1 + w ) ~ .  

p - 5 +  1 + 875 > 0. 

The cubic C( 1, y) has two real turning points if 
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It can be shown that this is always so when rj > 0 and 5 > 0. The coefficient of y 
in C( 1, y) is necessarily positive and the constant term is negative or zero, so that 
the cubic has at  least one non-negative root. However, 

where y1 is the lesser of the two values of y at which C( 1, y) turns. This is negative 
only if 

($-+E-4&)2(3[2+32&) < 0. 

Since this condition cannot be satisfied it follows that all three roots are real, 
and since the coefficient of y2 in C(1, y) is strictly positive the sum of the three 
roots is negative. There is therefore at  least one negative root. Consequently i t  
is not possible to satisfy condition (2.11). 

Condition (2.12) can be investigated in the same way whenf =k - I. It can then 
be shown that C( - 8, y) has two turning points if 

1-5+52+275 > 0, 

which is necessarily so. Since the coefficient of y2 is negative, the greater value 
of y at which C( - 8, y) turns, y2, is necessarily positive and 

C( - 8, y2) = - 1 + $5+ $52-  53 
27Q 1 + r ) 2  ( 2  + r )  

2(1 +n) (1 +m) (n+m + 3) 
+3115(2-g)-(1-5+52+2115)Q, 

which cannot be positive. There is thus at  least one positive zero of C( - 4, y) 
when f+ - 1. Since the result is easily shown to be true whenf = - 1, it follows 
that condition (2.12) cannot be satisfied either. 

The typical behaviour for axisymmetric relaxation of stress systems governed 
by (2.7) is shown in figure 1, in which y = ax/$ is plotted against the degree 
of anisotropy, x ,  for various initial conditions. It is a curious feature of such 
stress systems that, for some choices of the constants, the system can reach 
either a one-dimensional or a two-dimensional state in a finite time from certain 
initial conditions. When this happens the stress system either becomes stationary 
or, if it continues to change, it alters in a way that is not governed by (2.7). That 
such systems can be constructed is illustrated by the choice off and ,8 which makes 

6(1+gr) = [ ( l++q)  = 1. 

(The conditions /3 > 0 and I f \  < 1 are automatically satisfied if r > - 1, and 
by choosing a sufficiently large value of m, condition (2.10) can also be satisfied.) 
It is then possible to show that for some initial values the stress becomes either 
one-dimensional or two-dimensional in a finite time, with non-zero energy. 
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- 4- 0 '2 1 

X 

FIGURE 1. Typical solution curves of (2.7) in the form for axisymmetric stress given in 
(2.6); y = ax/& is given as a function of the degree of anisotropy x. The direction in 
which the curves are traversed as t increases is shown by the arrows; v decreases mono- 
tonically as t increases. 

In  those fluids for which /3 = 0, the function C(x,  y) is a quadratic in y, while 
P(x)  is a quadratic in x. If 

P(x)  += 0 at x = -4 or 1, 

it is simple to show that C( 1,  y) and C( - 4, y) each have two real zeros with 
opposite sign. Only if 

r (n+m+3)  = mn-2 

do P( - 4) and P( 1) both vanish. It can then be shown that the non-zero root of 

C(-i,Y) = 0 

is positive, and that the non-zero root of 

C(1,Y) = 0 

is negative, so that neither of conditions (2.11) and (2.12) can be satisfied. 
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This concludes the demonstration that it is not possible to construct a doubly 
degenerate third-order v-fluid of type I or type I1 which tends to the isotropic 
state for arbitrary initial conditions. 

3. Fluids of type III 
There are only two subdivisions of fluids of type 111. 
Type I I Ia ,  for which a, = a2 = a, = 0 and a:+ag $. 0. 
Type I I I b ,  for which a, = a, = as = 0 and a2 + 0. 
All fluids of type IIIa which possess isotropic solutions that decay to zero in 

a manner governed by equation ( 1 . 1 )  also possess a more general solution of the 
form 

1 
= so + (( 1 + t,t,)l+' - 1) tr ( f30) ,  

where r > - I ,  t o =  ( l + r ) t r ( ~ o ) / ~ t r ( ~ o ) ~ .  

It is therefore always possible to pose initial conditions appropriate to the 
equation for which S fails to remain positive definite, and so fluids of this type 
do not satisfy restriction 1. They will not be discussed further. 

Only those fluids of type I11 b which possess isotropic solutions that decay and 
whose behaviour is governed by the equation will be considered; a necessary 
condition therefore is 

a2 + 3a, =k 0 .  

The axisymmetric relaxation of stress in these fluids may be studied in the same 
way as in the last section. 

The equations which govern g and u are now 

and 
2+r  
1+n 

gii--gu++g2 = 0, 

where n, r,  /3 and 6 are now defined by the ratios 
2+r 

+a2 +a,:+, + Qa,: *a6 + +, + a, + +a, = 1 :/3: - - 
l + r  

and a,:a,+#a,:+a, = 1 : - -  2 + r  :6. 
l + n  

The interpretations of r and n are the same as in the previous section, SO the power 
law for decay of isotropic stress and a tendency towards isotropy for small 
departures from it require, as before, 

n > r > -1 .  

Equations (3 .1 )  and (3 .2)  can be used to eliminate ii and to obtain the equation 

l + n  ( 3 . 3 )  
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for the degree of anisotropy x, equal to the ratio of g to cr. It follows that if 

Px2--8~-((2+r)(n--r)/(l+r)(l+n) = 0 for -4 < x < 1 

there is an initial condition for which the fluid does not tend to isotropy. 
If attention is now restricted only to those fluids for which 

, 8 ~ ~ - 8 ~ - ( 2 + r ) ( n - r ) / ( l + r ) ( 1 + n )  < 0 for - 4  < x < 1, (3.4) 

it is clear that (3.3) must possess a t  least one solution for y for each value of x 
in ( -  g, l), where y = cr(dx/dcT); 

if this is not so, the equations do not have solutions for all possible initial-value 
problems appropriate to their type. Further, a t  x = - 4 equation (3.3) must have 
no positive roots, and a t  x = 1 it must have no negative roots. These two con- 
ditions are necessary since otherwise, provided that CT always decreases, it is 
possible to specify initial conditions which give solutions that cease to be positive 
definite. 

If ,8 and S are not both zero, it follows that /3 must be strictly negative (from 
(3.3), (3.4) and the two conditions a t  x = - $ and l), and 

p 6 min(6, - ZS}. 

When this is so, (3.3) has real roots if 

( Z + r ) ( l + r )  2 4x(6-/3x)(l+n)2. 

If the equality cannot be satisfied for any value of x in ( - $, I), there are initial- 
value problems whose solutions cannot tend to isotropy and also remain positive 
definite, since only one branch of (3.3) can pass through x = y = 0, and the two 
branches do not intersect. Equality occurs if 

Unless this equation has a double root the condition that (3.3) has real roots is 
violated for some acceptable values of x; since the last term is necessarily negative 
it is not possible to satisfy the condition. The only circumstance under which 
this fails to be true is when the roots of (3.5) are - 4  and 1;  even then, however, 
there are solutions which do not tend to isotropy as (T decreases since the double 
root of (3.3) for y cannot be zero a t  both points. This is apparent since the branches 
of the solution curves for y as a function of x do not intersect or touch except a t  
x = -4 and 1; from these points, one curve in each case tends to infinity (at 
x = +), and since the solutions of the equation move away from them as cr 
decreases, there is one solution that does not tend to isotropy. 

Thus if all solutions of (3.1) and (3.2) are to tend to isotropy and to remain 
positive definite, /3 and 6 must both be zero. When this is so, 

fl = (To/(l + t/tO)l+', g = go/(l +t/t,)"+", 

where cr,,, go and to are constants of integration. This solution has all the properties 
required of it provided only that 

n > r > - 1 .  (3.6) 
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The fluid from which these values of p and 8 arise has the equation 

a,T+u,tr(T)I = 0, (3-7) 

where a2 + 3a4 + 0 

and 

The exact and unique solution of (3.7) for an initial-value problem at t = 0 is 

where So and go are the initial values of S and CT at t = 0 and 

t o  = (1+~bO/I~Ol ,  

where a0 < 0 is the initial value of c?. It is simple to show that S tends to isotropy 
and that if S is initially positive semi-definite it becomes positive definite and 
remains so if and only if condition (3.6) holds. 

There is therefore a class of fluids of type I11 for which all solutions remain 
positive definite and tend to isotropy, and for which the energy decreases 
monotonically to zero. This fluid has only two non-zero constants with significance 
in the problem considered and these two must satisfy (3.6). The equation of the 
fluid is given in (3.7). 

4. Discussion 
We have seen that the only fluids whose stress is governed by (1.1) and whose 

stress remains positive definite and tends towards isotropy, and whose energy 
decays, are of type 111. Their equation is 

wherea2+0 ,a2+3a ,+Oandn>r  > -1. 
The general solution of the equation is given in (3.9), and has all the properties 

of homogeneous turbulence listed as (i)-(iv) in $1. This family of fluids can 
therefore be used to model turbulence at infinite Reynolds number, and it is 
the only family of doubly degenerate third-order v-fluids that can be considered 
for the purpose. It is therefore instructive to compare the consequences of the 
solution (3.9) with the results of experiments and to attempt to estimate values 
for n and r .  

For the decay of isotropic turbulence, Batchelor & Townsend (1948) found 
that in an initial period the energy decayed approximately inversely with t ,  
and this corresponds to a value for r of zero. A summary of the results of these 
and later experiments for isotropic and slightly anisotropic turbulence is given 
by Comte-Bellot & Corrsin (1966). Most of the experiments listed by them are 
for grid Reynolds numbers in the range 5000-150000, and they deduce a typical 
value for r of 0.25. 

Townsend (1951) noted that anisotropic turbulence produced by a gauze 
tended to return to isotropy, although very slowly. He confirmed this tendency 
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FIGURE 2. The observations of Tucker & Reynolds (open circles) for KFS plotted against 
distance from the end of the distorting section of the wind tunnel and the observations of 
Comte-Bellot & Corrsin (crosses) for r3 x 10"' plotted against distance from the turbulence- 
producing grid. 

(Townsend 1954) with a higher initial level of anisotropy produced by a uniform 
distortion in a specially shaped wind tunnel. Somewhat similar experiments 
were performed by Tucker & Reynolds (1968), and these can be used to estimate 
n - r .  Figure 2 shows the relation of the number 

to the distance down the wind tunnel, where u> and u: are the mean-square 
turbulent velocity components perpendicular to the axis of the tunnel. In  these 
experiments the mean-square turbulent velocity component parallel to the axis 
was approximately equal to $(u?+ug). The solution (3.9) predicts that K ,  
should be proportional to the - (n - r)th power of distance down the tunnel 
from a suitably chosen origin under these circumstances. In  figure 2, Kc3 is 
plotted against distance; the relation between the observational points is de- 
scribed well by a straight line, giving 

n- r  N 0.33. 

Tucker & Reynolds compare their experiments with those of Uberoi (1963), 
and conclude that the value of r appropriate to their experiments is 0.2. 

The experiments of Comte-Bellot & Corrsin for axisymmetric decay of 
turbulence are consistent with this value of n - r,  and figure 2 also shows their 
observations for x - ~  plotted against distance, where x is the degree of anisotropy 
defined as in $ $ 2  and 3 of this paper. 

- -  
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In conclusion it seems that the behaviour predicted from the modelling of 
homogeneous turbulence of infinite Reynolds number by a doubly degenerate 
third-order v-fluid is consistent with the known experimental results. The simple 
way in which the structure of the stress tensor separates into the isotropic part 
and the deviatoric stress is remarkable. It suggests that results of experiments 
on anisotropic homogeneous turbulence might profitably be presented in this 
manner, rather than by attempting to describe the principal components 
separately. 

From the study of ( l . l ) ,  which possesses nine constants whose values are not 
initially known, we have been able to show that it cannot model various very 
simple properties of homogeneous turbulence unless five of these constants are 
exactly determined while two others have to satisfy inequality constraints. That 
it is possible to find such a high proportion of the constants by such simple 
arguments is not obvious beforehand, but that it can be done in one type of 
problem suggests that it may also be possible in others. If this is indeed so, it  
seems that the modelling of turbulence by means of a v-fluid could become 
a method with considerable practical value. 

I should like to thank Professor Ian Proudman and Dr Ian Cook for many 
interesting and valuable discussions on the behaviour of v-fluids and the 
philosophy of their use for the description of turbulence. 

Appendix 
(i) The function P which appears in (2 .5)  has the form 

( n + l ) ( m + l )  r + 2  ( n - r ) ( m - r )  
( r + l ) ( r + 2 )  +-)- r + l  (r+1)2 * 

(ii) The function C which appears in (2 .6 )  has the form 

n + m + 3  r + 2  
( 1 + 4  r + l  r + l  

-- P w J .  -f 1 + (n+ 1 )  (m+ 1 )  
( r +  1 )  (r + 2 )  

C ( x ,  y) = xF(x)  + y 

I ( r + 2 )  ( n + m + 3 )  
(n+ 1 )  (m+ 1 )  

+ y2 ( P(trz)) 1 (x - if) - 3,834 fx - 1 - x) + 2 s  

+ p ~ 3 ( 1  + ~ - f q .  
(iii) The function T is (2 .7 )  is given by 

U(8 - *$I) + # fP(B - @I)2 (r + 2 )  (n  + m + 3 )  - 
(n+ 1 )  (m+ 11 
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